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Abstract
The universal character of the recent experimentally found master curve for the magnetic
entropy change, �SM, in studies of the magnetocaloric response of materials is analytically
justified by using scaling arguments. The validity of the obtained scaling relations is checked
against experimental data as well as the mean field and Heisenberg models. The curves are
unique for each universality class. It is shown that the universal curve can be practically
constructed in two different ways, reducing the number of required parameters with respect to
the previous phenomenological derivation. This opens the possibility of an inexpensive
screening of the performance of magnetocaloric materials, as it allows extrapolations to
magnetic fields or temperatures not available in some laboratories.

(Some figures in this article are in colour only in the electronic version)

The magnetocaloric effect (MCE), i.e. the temperature change
of a magnetic material when it is magnetized/demagnetized [1],
is a field of increasing research interest, mainly because mag-
netic refrigerators are expected to be more environmental
friendly than those based on gas compression–expansion [2, 3].
From the materials science point of view, there are numer-
ous attempts to find materials with enhanced magnetocaloric
response (mostly associated with giant magnetocaloric effect,
GMCE) [4–7] and to reduce material costs (by replacing rare
earths by transition metal based alloys) [8]. However, in or-
der to be able to apply a specific material in a real refriger-
ator, there are additional requisites which have to be consid-
ered [9–11] and this justifies why present refrigerator proto-
types still employ almost exclusively MCE materials with a
second-order magnetic phase transition (versus GMCE materi-
als, with a first-order magneto-structural phase transition). Si-
multaneous to the search for advanced magnetocaloric mate-
rials, the field dependence of this effect is also being studied
intensively, either experimentally [12–15], or from a theoreti-
cal point of view by restricting the description to a mean field
approach [16, 17]3, as this can give further clues of how to

3 For a comprehensive summary of the application to rare earth metals, see
section 8.1.8 of [4].

improve the performance of refrigerant materials for the mag-
netic field range employed in actual refrigerators (generally
10–20 kOe). More recently, the limitation of a mean field ap-
proach has been overcome by using the equation of state for
materials with a second-order magnetic phase transition [18].
Expressing the field dependence as �SM ∝ H n, this approach
allowed us to find a relationship between the exponent n at
the Curie temperature and the critical exponents of the mate-
rial [18]:

n|T =TC = 1 + 1

δ

(
1 − 1

β

)
. (1)

A phenomenological universal curve for the field dependence
of �SM was also proposed [18]: its construction was based on
the assumption that, if such universal curve exists, equivalent
points of the different �SM(T ) curves measured up to different
maximum applied fields should collapse onto the same point of
the universal curve. Therefore, the main aspect of constructing
the curve was the selection of the equivalent points of the
experimental curves and for this purpose the peak entropy
change, |�S pk

M |, has been taken as a reference. It was assumed
that all points that are at the same level with respect to |�S pk

M |
should be in an equivalent state. In that way, two different
reference points were found for each curve, one below TC and
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the other above it. After normalizing the curves with respect
to their peak, the test for the existence of the universal curve
would be to impose a scaling law for the temperature axis
which makes the equivalent points collapse and check if the
remaining parts of the curves also collapse. The temperature
axis was rescaled in a different way below and above TC, just
by imposing that the position of the two reference points of
each curve correspond to θ = ±1:

θ =
{

−(T − TC)/(Tr1 − TC); T � TC

(T − TC)/(Tr2 − TC); T > TC
(2)

where Tr1 and Tr2 are the temperatures of the two reference
points of each curve. This procedure has been successfully
applied to different families of soft magnetic amorphous
alloys [18, 19] and lanthanide based crystalline materials [20].

On the other hand, the search for universal curves
and scaling laws permeates all fields of scientific research,
ranging from economics [21], to seismicity [22] and condensed
matter physics [23]. In materials science, the possibility
of collapsing experimental data of different materials into a
single curve allows us to make predictions for the response of
a particular material under different experimental conditions
(which is extremely useful for cases when those conditions
are not locally available to the researcher or are heavily
resource consuming), and to be used as a simple, cost-
effective screening tool in the search for more efficient
materials. In the field of magnetocaloric research, universal
curves or scaling behaviours have being recently looked
for, either from the previously described phenomenological
approach [18] or from the theoretical description of some
specific models [24–26]. However, universal curves achieve
their higher degree as predictive tools only when their existence
is analytically demonstrated, as this would prove to which
extent it is universal or if it just an ad hoc developed tool
for some specific families of materials. The aim of this
work is to show that the existence of the above-mentioned
universal curve for the magnetocaloric effect (which, up to
now, was only based on phenomenological grounds) can be
grounded theoretically, proving that the MCE data of different
alloys of the same universality class should collapse onto
the same curve, regardless of the applied magnetic field.
This demonstration will allow us to reduce the number of
parameters necessary to construct the curve and provides an
alternative, more robust, method of constructing it.

This demonstration of the universality of the �SM curve is
based on the assumption of scaling near a second-order phase
transition, which is strongly supported by experimental results
and theoretical analysis (see for example [27]). For magnetic
systems, the scaling equation of state takes the form [28]

H

Mδ
= h

(
t

M1/β

)
, (3)

where t = (T − TC)/TC is the reduced temperature, TC is
the Curie temperature, h(x) is a scaling function and β and
δ are critical exponents which characterize the magnetization
behaviour along coexistence (H = 0, t < 0) and the critical
isotherm (t = 0), respectively. We note that the scaling

function is the same for each system in a given universality
class if we choose the magnetization and magnetic field units
in such a way that h(0) = 1 and h(−1) = 0. As the critical
exponents, the scaling equation of state is characteristic of the
universality class of the system. As a particular case, for mean
field (i.e. infinite-ranged interactions) the scaling function in
equation (3) is h(x) = (1 + x). The scaling equation of state
can be expressed in different ways. For example, equation (3)
may be formally inverted as:

M

|t|β = m±
(

H

|t|�
)

(4)

where � = βδ is the gap exponent and the plus (minus) sign
corresponds to t > 0 (t < 0), respectively.

The MCE can be characterized by the magnetic entropy
change due to the application of a magnetic field H , which can
be evaluated from the processing of the temperature and field
dependent magnetization curves:

�SM =
∫ H

0

(
∂M

∂T

)
H

dH. (5)

Assuming the scaling form of the equation of state given by
equation (4), and after some algebra, this expression can be
rewritten as:

�SM/aM = ±|t|1−α

∫ H/|t|�

0
dx(βm±(x) − �xm ′

±(x))

= |t|1−α s̃(t/H 1/�) = H
1−α
� s(t/H 1/�) (6)

where aM = T −1
c Aδ+1 B , being A and B the critical amplitudes

at coexistence (M = A(−t)β) and along the critical isotherm
(H = B Mδ), respectively. Note that 1 − α = β + � − 1
(Griffiths equality) and s(x) = |x |1−αs̃(x). This equation
shows that if the reduced temperature t is rescaled by a factor
proportional to H 1/�, and the magnetic entropy change by
aM H (1−α)/�, the experimental data should collapse onto the
same curve. Similarly, the exponent n controlling the field
dependence has the following scaling behaviour:

n = ∂ ln |�SM|
∂ ln H

= 1 − α

�
− 1

�

d ln |s(x)|
d ln x

∣∣∣∣
x=t/H 1/�

. (7)

Consequently, the values of n also collapse when plotted
against the same rescaled temperature axis for which the
normalized values of �SM collapse onto the same universal
curve. Experimental evidences of this collapse of n have been
recently given for soft magnetic amorphous alloys [10, 29].
It is worth mentioning that equation (6) proves that the field
dependence of the magnetic entropy change for T = TC,
which was recently derived from the Arrott–Noakes equation
of state [18]

�SM|T =TC ∝ H 1+ 1
δ
(1− 1

β
) = H

1−α
� , (8)

is valid for any magnetic system which follows a scaling
equation of state.

When the critical exponents of the material are known,
the rescaled temperature axis can be constructed using
equation (6). One consequence of the above given deduction
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is that there is no need to use two reference temperatures as
in equation (2), because the scaling law is the same below and
above the Curie temperature, but the whole temperature axis
can be scaled using either of the expressions in equation (2).
However, the noise of experimental data can be overcome by
using the two well separated reference temperatures, making
the existence of the universal curve more evident.

From a theoretical point of view, provided that we
know the equation of state, the Curie temperature and the
critical exponents of the studied material, the universal
curve for the magnetic entropy change could be constructed
without introducing any additional parameters. However,
when experimentalists are characterizing the magnetocaloric
response of a new material, neither the analytical form of
the equation of state, nor the critical exponents are known a
priori. Therefore, what from a theoretical point of view can be
simply seen as introducing the value of the Curie temperature
inside equation (6), becomes an intractable approach when the
functional form of s is not known (the usual situation when
experimentally investigating a new material for the first time).

The transformation from a theoretical model to the
universal curve and, finally, to the calculated magnetocaloric
response of a ‘virtually fabricated material’ is straightforward.
However, the method of obtaining the universal curve from
experimental data needs the use of additional parameters. To
make a practical case, let us concentrate for a moment on
a single hypothetical material whose equation of state is the
empirical Arrott–Noakes (AN) equation: [30]

H
1
γ = a(T − TC)M

1
γ + bM

1
β
+ 1

γ . (9)

The different �SM curves for different applied magnetic
fields can be univocally characterized by the Curie temperature
(related to the position of the peak), and the parameters a
and b appearing in equation (9). However, the identification
of parameters a and b from the experimental �SM curves
is not straightforward. Therefore, an equivalent set of three
parameters, more easily identifiable, should be defined. In
our description, these parameters are |�S pk

M |, TC and the
previously defined reference temperature, Tr. This reference
temperature is an instrumental parameter which allows the
placement of equivalent points of the �SM curves on the same
position of the rescaled temperature axis. Although it lacks a
physical meaning, its virtue is that even without knowing the
analytical form of the equation of state, or the values of the
critical exponents of the material, the procedure described in
this work allows the extraction of the universal curve for the
magnetocaloric effect.

In order to select the reference temperature, taking into
account that the overlap of �SM curves is intimately associated
to that of the n curves, an alternative method for constructing
the universal curve can be proposed: to select the reference
temperature as that corresponding to a specific value of the
exponent n. When normalizing the �SM curves, as there can
be cases where the peak is not properly determined (e.g. few
data points in that temperature range), it is also advisable to
normalize with respect to the �SM value corresponding to the
reference temperature.

Figure 1. Scaling laws controlling the field dependence of the
reference temperature and the refrigerant capacity for a
Fe78Co5Zr6B5Ge5Cu1 amorphous alloy. The values of the critical
exponents were previously determined using the Kouvel–Fisher
method. Lines are a linear fit to the data.

In order to check the accuracy of the given scaling re-
lations for experimental data, a Fe78Co5Zr6B5Ge5Cu1 amor-
phous alloy has been selected. Details about sample prepara-
tion and measuring techniques can be found elsewhere [31, 32].
The reference temperature for each applied field was selected
as that which corresponds to n = 1.25. The values of the crit-
ical exponents and the Curie temperature were determined us-
ing the Kouvel–Fisher method [33], obtaining β = 0.42±0.01;
γ = 1.39 ± 0.01; TC = 467 ± 2 K. Figure 1 shows the field
dependence of the reference temperature and of the refriger-
ant capacity, RC , defined as the product of the peak entropy
change times the full width at half maximum of the peak. Ac-
cording to equation (6), the reduced temperature axis should
scale with field as H 1/�. Therefore, the reference tempera-
ture calculated in the phenomenological approach should also
scale with field in this same way. Figure 1 shows a good agree-
ment between the Tr values determined from the experimental
curves and the scaling law predicted by equation (6). For con-
structing the figure, the previously quoted values of the crit-
ical exponents have been used, together with the relationship
� = β + γ . Equation (6) also predicts that RC should scale
with an exponent of 1/�+ (1 − α)/� = 1+1/δ (the addition
of the exponents controlling the field dependence of the peak
entropy change and of the reduced temperature axis). A good
agreement between the experimental RC data and the scaling
law predicted by equation (6) is also evidenced.

In the literature, accurate expressions of the equation of
state for the 3D Ising [34], XY [35] and Heisenberg [36]
models have been proposed, and for the Ising and XY
cases they are in excellent agreement with computer
simulations [35, 37]. The empirical Arrott–Noakes (AN)
equation also obeys scaling with h(x) = (1 + x)γ , where
γ = β(δ − 1). Following reference [36], it is worthwhile
noting that the AN expression fits the 3D Heisenberg scaling
equation of state for x < 0.75 with a relative error less than
3%, which implies that it is essentially exact except for t � 0
and very small magnetic fields. For β = 0.5 and γ = 1, the
AN expression is exactly coincident with the mean field case.
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Figure 2. Universal curves for the mean field and Heisenberg models
obtained from the numerically generated magnetization curves. The
reference temperature has been selected in all cases as that
corresponding to n = 1.5. Left inset: comparison between the
scaling equation of state corresponding to the Heisenberg model and
to the Arrott–Noakes equation of state with the critical exponents of
the Heisenberg model. Right inset: some of the original curves used
for generating the universal curve for the mean field model.

To test the difference between the curves associated with
different universality classes, magnetization curves have been
numerically generated using the AN equation of state for the
mean field and Heisenberg models (the accuracy of the AN
equation of state for describing the Heisenberg model can be
inferred from the left inset of figure 2, which confirms the
previously mentioned agreement between the AN description
and the exact scaling function [36]) and their magnetocaloric
response has been calculated using a numerical approach
to equation (5). Following the above described procedure,
selecting the reference temperatures as those corresponding
to n = 1.5 and normalizing the �SM curves with respect to
their value at T = Tr, figure 2 shows the universal curves
corresponding to the different models. For each universality
class, the curve is unique (i.e. changing the values of the
Curie temperature or the parameters a and b in the equation
of state does not alter the curve) but it is different from one
class to another. The parameters used for generating the
magnetization curves from which this figure was calculated
were a = 1, b = 1 for both models—these values are chosen
due to simplicity, as the universal curve is not dependent on
them—and the critical exponents were β = 0.5; γ = 1 and
β = 0.367; γ = 1.388 for the mean field and Heisenberg
models, respectively. Although for the mean field model the
peak entropy change corresponds to the Curie temperature, in
the Heisenberg case the peak occurs at higher temperatures. A
similar effect is found for the minimum value of n, which can
be displaced from the Curie temperature.

Figure 3 shows the collapse of the experimental magnetic
entropy change curves of the amorphous alloy measured up
to different maximum magnetic fields ranging from 2.5 to
15 kOe with increments of 125 Oe, together with the rescaled
�SM curve corresponding to the AN equation of state with the
values of the critical exponents previously calculated for this
alloy. The description of the experimental data given by the

Figure 3. Experimentally determined universal curve for a
Fe78Co5Zr6B5Ge5Cu1 amorphous alloy measured up to different
maximum applied fields ranging from 2.5 to 15 kOe with increments
of 125 Oe (crosses) and prediction of the Arrott–Noakes equation of
state by using the critical exponents of the material (line).

equation of state is remarkably good. The differences in the
peak value are inside the experimental error margin for �SM

(3%). The poorer agreement at lower temperatures can be
ascribed either to the distance from the transition temperature,
or to the appearance of different magnetization mechanisms
associated to the disordered structure in the alloy. However,
the maximum error in the collapse of the experimental data on
a single curve is ∼5% for the whole temperature span of the
figure and the separation between the experimental data and
the AN curve remains below 5% up to a reduced temperature
axis of 9. With respect to the scaling of the refrigerant
capacity, this range of rescaled temperatures is broad enough
to allow the proper reproduction of the field dependence, as
shown in figure 1. Nevertheless, it is worth mentioning that
corrections to scaling may appear if the temperature is far
from the critical value. Such corrections can be explained
by the presence of irrelevant operators in the renormalization-
group sense and are characterized by correction-to-scaling
exponent [38]. However, the actual range in which these
corrections are nonnegligible depends on the details of the
system. Our experimental data show that these corrections are
less than the experimental error bar in the region of interest
(i.e. close to the magnetic entropy change peak).

In conclusion, it has been analytically demonstrated that
there exists a universal curve for the magnetic entropy change
which is the same for any material in the same universality
class. The rescaled temperature axis is the same as that which
makes the curves of the exponent n or the magnetization
curves collapse. This demonstration confirms the validity
of the experimentally found universal curves for specific
families of magnetocaloric materials. The phenomenological
construction of the universal curve (i.e. without a priori
knowledge of the critical exponents of the material) can be
made with the use of a single reference temperature (apart
from the Curie temperature) and an alternative procedure for
the cases where the peak is not properly defined is also
given. This opens the possibility of an inexpensive screening
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of the performance of magnetocaloric materials, as it allows
extrapolations to magnetic fields or temperatures not available
in some laboratories.
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Planes A 2002 Phys. Rev. B 66 212402

[15] Tishin A M, Derkach A V, Spichkin Y I, Kuz’min M D,
Chernyshov A S, Gschneidner K A Jr and
Pecharsky V K 2007 J. Magn. Magn. Mater. 310 2800

[16] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334
[17] Dong Q Y, Zhang H W, Shen J L, Sun J R and Shen B G 2007

J. Magn. Magn. Mater. 319 56
[18] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett.

89 222512
[19] Franco V, Blázquez J S, Millán M, Borrego J M,

Conde C F and Conde A 2007 J. Appl. Phys. 101 09C503
[20] Franco V, Conde A, Pecharsky V K and

Gschneidner K A Jr 2007 Europhys. Lett. 79 47009
[21] Samanidou E, Zschischang E, Stauffer D and Lux T 2007

Rep. Prog. Phys. 70 409
[22] Lippiello E, Godano C and de Arcangelis L 2007 Phys. Rev.

Lett. 98 098501
[23] Biel B, Garcı́a-Vidal F J, Rubio A and Flores F 2005 Phys. Rev.

Lett. 95 266801
[24] Zhitomirsky M E 2003 Phys. Rev. B 67 104421
[25] Zhitomirsky M E and Honecker A 2004 J. Stat. Mech.: Theor.

Exp. P07012
[26] Garst M and Rosch A 2005 Phys. Rev. B 72 205129
[27] Stanley H E 1999 Rev. Mod. Phys. 71 S358
[28] Widom B 1965 J. Chem. Phys. 43 3898

Griffiths R B 1967 Phys. Rev. 158 176
[29] Franco V, Conde C F, Blázquez J S, Conde A, Švec P,
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